Simulating Stochastic Reaction-Diffusion Systems on and within Moving Boundaries
نویسندگان
چکیده
Chemical reactions inside cells are generally considered to happen within fixed-size compartments. However, cells and their compartments are highly dynamic. Thus, such stringent geometrical assumptions may not reflect biophysical reality, and can highly bias conclusions from simulation studies. In this work, we present an intuitive algorithm for particle-based diffusion in and on moving boundaries, for both point particles and spherical particles. We first benchmark our proposed stochastic method against solutions of partial differential equations in appropriate scenarios, and further demonstrate that moving boundaries can give rise to super-diffusive motion as well as time-inhomogeneous reaction rates. Finally, we conduct a numerical experiment representing photobleaching of diffusing fluorescent proteins in dividing Saccharomyces cerevisiae cells to demonstrate that moving boundaries might cause important effects neglected in previously published studies of cell compartmentalization.
منابع مشابه
Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملModeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients
The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even f...
متن کاملThe time dependent propensity function for acceleration of spatial stochastic simulation of reaction-diffusion systems
The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion ...
متن کاملThe Markoff–automaton a New Algorithm for Simulating the Time–evolution of Large Stochastic Dynamic Systems
We describe a new algorithm for simulating complex Markoff–processes. We have used a reaction–cell method in order to simulate arbitrary reactions. It can be used for any kind of RDS on arbitrary topologies, including fractal dimensions or configurations not being related to any spatial geometry. The events within a single cell are managed by an event handler which has been implemented independ...
متن کاملA hybrid continuous-discrete method for stochastic reaction–diffusion processes
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015